Теория Случайной называется величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно.
Различают дискретные и непрерывные случайные величины.
Случайная величина, множество значений которой заполняет сплошь некоторый числовой промежуток, называется непрерывной . Заметим, что дискретные и непрерывные величины не исчерпывают все типы случайных величин.
Если случайная величина не относится ни к дискретным, ни к непрерывным случайным величинам, то ее называют смешанной.
Очевидно, что для полной характеристики дискретной случайной величины мало знать ее значения. Необходимо им поставить в соответствие вероятности.
Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
Простейшая формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины (обычно в порядке возрастания) и соответствующие им вероятности:
Х
х1
х2
…
хn
…
Р
р1
р2
…
рn
…
Такая таблица называется рядом распределения. Допустим, что число возможных значений случайной величины конечно: х1, х2, …, хn. При одном испытании случайная величина принимает одно и только одно постоянное значение. Поэтому события Х = хi (i = 1, 2, … , n) образуют полную группу попарно независимых событий. Следовательно, р1 + р2 + … + рn = 1.
Можно закон распределения изобразить и графически, откладывая на оси абсцисс возможные значения случайной величины, а на оси ординат – соответствующие вероятности. Для большей выразительности полученные точки соединяются прямолинейными отрезками. Получающая при этом фигура называется многоугольником (полигоном) распределения.
Функция называется плотностью распределения вероятностей, или кратко, плотностью распределения. Если x1<x2, то
Исходя из геометрического смысла интеграла как площади, можно сказать, что вероятность выполнения неравенств равна площади криволинейной трапеции с основанием[x1,x2], ограниченной сверху кривой
Так как
, то
Пользуясь формулой , найдем как производную интеграла по переменной верхней границе, считая плотность распределения непрерывной:
Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х, где функция непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.
На основании формулы , полагая x1=x, , имеем
В силу непрерывности функции F(х) получим, что
Следовательно
Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю.
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств
, , ,
Имеют одинаковую вероятность, т.е.
В самом деле, например,
так как
Функция распределения содержит полную информацию о случайной величине. На практике функцию распределения не всегда можно установить; иногда такого исчерпывающего знания и не требуется. Частичную информацию о случайной величине дают числовые характеристики, которые в зависимости от рода информации делятся на следующие группы.
1. Характеристики положения случайной величины на числовой оси (мода Мo, медиана Мe, математическое ожидание М(Х)).
2. Характеристики разброса случайной величины около среднего значения (дисперсия D(X), среднее квадратическое отклонение σ(х)).
3. Характеристики формы кривой y = φ(x) (асимметрия As, эксцесс Ех).
Рассмотрим подробнее каждую из указанных характеристик.
Математическое ожидание случайной величины Х указывает некоторое среднее значение, около которого группируются все возможные значения Х. Для дискретной случайной величины, которая может принимать лишь конечное число возможных значений, математическим ожиданием называют сумму произведений всех возможных значений случайной величины на вероятность этих значений:
. (2.4)
Для непрерывной случайной величины Х, имеющей заданную плотность распределения φ(x) математическим ожиданием называется следующий интеграл:
. (2.5)
Здесь предполагается, что несобственный интеграл сходится абсолютно, т.е. существует.
Свойства математического ожидания:
1. М(С) = C, где С = const;
2. M(C∙Х) = С∙М(Х);
3. М(Х ± Y) = М(Х) ± М(Y), где X и Y – любые случайные величины;
4. М(Х∙Y)=М(Х)∙М(Y), где X и Y – независимые случайные величины.
Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.
Модой дискретной случайной величины, обозначаемой Мо, называется ее наиболее вероятное значение (рис. 2.3), а модой непрерывной случайной величины – значение, при котором плотность вероятности максимальна (рис. 2.4).
Рис. 2.3 Рис. 2.4
Медианой непрерывной случайной величины Х называется такое ее значение Ме, для которого одинаково вероятно, окажется ли случайная величина меньше или больше Ме, т.е.
Р(Х < Ме) = Р(X > Ме)
Из определения медианы следует, что Р(Х<Ме) = 0,5, т.е. F (Ме) = 0,5. Геометрически медиану можно истолковывать как абсциссу, в которой ордината φ(x) делит пополам площадь, ограниченную кривой распределения (рис. 2.5). В случае симметричного распределения медиана совпадает с модой и математическим ожиданием (рис. 2.6).
Рис. 2.5 Рис. 2.6
Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения от математического ожидания
D(X) = M(X –М(Х))2.
Дисперсию случайной величины Х удобно вычислять по формуле:
а) для дискретной величины
; (2.6)
б) для непрерывной случайной величины
j(х)dx – [M(X)]2 . (2.7)
Дисперсия обладает следующими свойствами:
1. D(C) = 0, где С = const;
2. D(C×X) = C2∙D(X);
3. D(X±Y) = D(X) + D(Y), если X и Y независимые случайные величины.
Средним квадратическим отклонением случайной величины Х называется арифметический корень из дисперсии, т.е.
σ(X) =.
Заметим, что размерность σ(х) совпадает с размерностью самой случайной величины Х, поэтому среднее квадратическое отклонение более удобно для характеристики рассеяния.
Случайной называется величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно.
Различают дискретные и непрерывные случайные величины.
Случайная величина, множество значений которой заполняет сплошь некоторый числовой промежуток, называется непрерывной . Заметим, что дискретные и непрерывные величины не исчерпывают все типы случайных величин.
Если случайная величина не относится ни к дискретным, ни к непрерывным случайным величинам, то ее называют смешанной.
Очевидно, что для полной характеристики дискретной случайной величины мало знать ее значения. Необходимо им поставить в соответствие вероятности.
Соответствие между всеми возможными значениями дискретной случайной величины и их вероятностями называется законом распределения данной случайной величины.
Простейшая формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины (обычно в порядке возрастания) и соответствующие им вероятности:
Можно закон распределения изобразить и графически, откладывая на оси абсцисс возможные значения случайной величины, а на оси ординат – соответствующие вероятности. Для большей выразительности полученные точки соединяются прямолинейными отрезками. Получающая при этом фигура называется многоугольником (полигоном) распределения.
Так как
На основании формулы , полагая x1=x,
В силу непрерывности функции F(х) получим, что
Следовательно
Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю.
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств
Имеют одинаковую вероятность, т.е.
В самом деле, например,
так как
Функция распределения содержит полную информацию о случайной величине. На практике функцию распределения не всегда можно установить; иногда такого исчерпывающего знания и не требуется. Частичную информацию о случайной величине дают числовые характеристики, которые в зависимости от рода информации делятся на следующие группы.
1. Характеристики положения случайной величины на числовой оси (мода Мo, медиана Мe, математическое ожидание М(Х)).
2. Характеристики разброса случайной величины около среднего значения (дисперсия D(X), среднее квадратическое отклонение σ(х)).
3. Характеристики формы кривой y = φ(x) (асимметрия As, эксцесс Ех).
Рассмотрим подробнее каждую из указанных характеристик.
Математическое ожидание случайной величины Х указывает некоторое среднее значение, около которого группируются все возможные значения Х. Для дискретной случайной величины, которая может принимать лишь конечное число возможных значений, математическим ожиданием называют сумму произведений всех возможных значений случайной величины на вероятность этих значений:
Для непрерывной случайной величины Х, имеющей заданную плотность распределения φ(x) математическим ожиданием называется следующий интеграл:
Здесь предполагается, что несобственный интеграл
Свойства математического ожидания:
1. М(С) = C, где С = const;
2. M(C∙Х) = С∙М(Х);
3. М(Х ± Y) = М(Х) ± М(Y), где X и Y – любые случайные величины;
4. М(Х∙Y)=М(Х)∙М(Y), где X и Y – независимые случайные величины.
Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.
Модой дискретной случайной величины, обозначаемой Мо, называется ее наиболее вероятное значение (рис. 2.3), а модой непрерывной случайной величины – значение, при котором плотность вероятности максимальна (рис. 2.4).
Рис. 2.3 Рис. 2.4
Медианой непрерывной случайной величины Х называется такое ее значение Ме, для которого одинаково вероятно, окажется ли случайная величина меньше или больше Ме, т.е.
Р(Х < Ме) = Р(X > Ме)
Из определения медианы следует, что Р(Х<Ме) = 0,5, т.е. F (Ме) = 0,5. Геометрически медиану можно истолковывать как абсциссу, в которой ордината φ(x) делит пополам площадь, ограниченную кривой распределения (рис. 2.5). В случае симметричного распределения медиана совпадает с модой и математическим ожиданием (рис. 2.6).
Рис. 2.5 Рис. 2.6
Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения от математического ожидания
D(X) = M(X –М(Х))2.
Дисперсию случайной величины Х удобно вычислять по формуле:
а) для дискретной величины
б) для непрерывной случайной величины
Дисперсия обладает следующими свойствами:
1. D(C) = 0, где С = const;
2. D(C×X) = C2∙D(X);
3. D(X±Y) = D(X) + D(Y), если X и Y независимые случайные величины.
Средним квадратическим отклонением случайной величины Х называется арифметический корень из дисперсии, т.е.
σ(X) =
Заметим, что размерность σ(х) совпадает с размерностью самой случайной величины Х, поэтому среднее квадратическое отклонение более удобно для характеристики рассеяния.
Полезные ресурсы:
Онлайн-учебник по математике http://www.math4you.ru/theory/TerVerMatStat/TerVetPlot/
Решение задач по ТОЭ, ОТЦ, высшей математике, физике, программированию http://www.toehelp.ru/theory/ter_ver/3_3/
Источники:
http://www.pm298.ru/
http://www.mathprofi.ru/
http://www.math4you.ru/